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Abstract In this paper, we will investigate the fuzzy layer group symmetries of
two-dimensional (2D) periodic molecules. Here, we select several graphene mol-
ecules as typical examples to discuss. For these two-dimensional graphene mole-
cules, their MO energies, symmetries and fuzzy symmetries are preliminarily studied.
In addition, we especially make a detailed comparison between the zigzag and arm-
chair graphene molecules. These studies will develop a theoretical framework that
will help us to investigate the fuzzy symmetries of various layer group molecules as
well as molecules with 3D periodic structure.

Keywords Planar graphene molecules · Fuzzy layer group symmetry ·
Membership function · Irreducible representation component

1 Introduction

Fuzzy symmetry is a very interesting topic in theoretical chemistry and a few impor-
tant results have been obtained [1–11]. In our previous papers, some research methods
have been established to study the fuzzy symmetry characteristics of the molecule
structures and molecular orbitals (MOs) [12,13] for the static and dynamic molecular
systems [14–23]. For molecules possessing periodicity in one-dimensional direction,
they are usually analyzed by using the cylinder group Gn

1 [24,25], where n indicates
the dimension of the space imbedding these one-dimensional (1D) periodic systems
and generally is a positive integer and no more than three. However, in terms of real
molecular structure, its periodicity in a certain direction is often incomplete (fuzzy),
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and we have done such studies on the molecules of polyyne [17], cumulative poly-
ene [23], conjugate polyene [21,22], and their derivatives. These studies are about
fuzzy point symmetry and fuzzy space periodic symmetry which is only involved for
systems with 1D directional periodicity. In this paper, we will explore the molecules
with fuzzy periodicity in two different directions in 2D plane, i.e. Gn

2 systems [24,25].
Here, we select several graphene molecules as typical examples to investigate.

Graphene has attracted a great of attention because of its unique structural features
and special physical and chemical properties in the past decades [26,27]. However,
at one time, it has been regarded as a hypothetical structure or academic material, till
Geim and Novoselov successfully isolated single sheets of graphene from the graph-
ite crystals in laboratory in 2004 [28], which proved that graphene can exist by itself
alone. Therefore, they shared the 2010 Nobel Prize in Physics. Graphene has many
eximious properties, such as high thermal conductivity, strong mechanical strength,
unique electrical property, and special electronic structure. So, it is regarded as an
important nano-material to manufacture nano-electronic devices in the future. In the
past decades, large numbers of article and review on graphene have been published,
which were mostly concentrated in the molecule synthesis, spectroscopic properties,
stability, and magnetism [29–34]. Here, several planar graphene molecules are taken
as examples to analyze their π -MO energies, molecular symmetries, and fuzzy sym-
metries. These studies will lead to a better understanding of the microscopic structure
and electronic properties of graphene, and help us expanding our molecular fuzzy
symmetry studies from one-dimensional systems to 2D and 3D systems.

2 Molecular geometry and computational method

2.1 Molecular geometry of graphene

Graphene is a one-atom-thick sheet composed of the sp2 carbon atoms arranged in
hexagonal planar crystal, and it is a 2D honeycomb lattice periodic structure. Graphene
structure is very stable and the C-C bond length is 1.42 Å. The connections between
the individual carbon atoms are flexible, and the C-atom sheet will bend when the
external force is applied on it. So, it does not need to re-arrange the C-atoms to adapt
to the external force and maintain the structural stability [29–34]. Here, we will take
quasi-graphene molecule C200H40 as an example to illuminate its molecular geom-
etry and symmetry characteristics. As shown in Fig. 1, the molecule can be seen as
quasi-graphene, except that its hexatomic rings are all benzene rings and the border
C-atoms are saturated with hydrogen atoms. It contains m ×n = 200 (m = 25, n = 8)
C-atoms. When m and n tend to infinite large, the molecule will form an infinite layer
of graphene. This molecule exists periodic symmetries in two directions which is hex-
agonal plane lattice (namely, one of the five plane lattices) and the lattice point can be
defined at the center of the benzene ring [24]. If such hexagonal plane lattice is dis-
posed by Wigner-Seitz cell treatment, we can obtain the molecular structure arranged
by C-atoms as shown in Fig. 1. The two independently basic periodic symmetry direc-
tions maybe selected differently. For example, one direction can be selected as the
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Fig. 1 Molecular structure of C200H40 composed of 200 C-atoms and 40 H-atoms (m = 25, n = 8)

horizontal direction, while the other one is selected in the direction forming a 60◦
angle with the horizontal direction (see Fig. 1).

According to Born-Karman approximation, when the number of lattice point of the
one-dimensional point lattice is very large, its translational symmetry transformation is
almost isomorphic with the corresponding higher rotational symmetry transformation.
In Fig. 1, if we manipulate the horizontal translation to the corresponding rotational
symmetry transformation and bond the left and right C-atoms (namely, the terminative
C-atoms of both ends) together, we will obtain a zigzag carbon nanotube. Similarly, if
manipulating the vertical translation into the corresponding rotational symmetry trans-
formation and bonding the top and bottom C-atoms (terminative C-atoms in the same
columns) together, these C-atoms can form an armchair carbon nanotube. Bonding the
C-atoms by other methods, we can also obtain different carbon nanotubes with opti-
cal activity. On the other hand, when we manipulate both the horizontal and vertical
transformations into the rotational symmetry transformation at the same time, these
C-atoms will form a carbon‘nano-torus’ [35]. This ‘torus’ is not a general torus in
Euclidean space, and is related to a kind of specific symmetry which is different from
the general point group symmetry and cylindrical group symmetry. Analysis of such
torus symmetry has been discussed in other paper [36]. According to topology theory,
the generators of the torus are made up of two independent translation orbit spaces [37].
Understanding of the above symmetry, it will help us to analyze the characteristics of
the symmetry and fuzzy symmetry for such a kind of graphene molecules.

2.2 Fuzzy symmetry calculations of the molecular skeleton

For systems with cylinder group symmetry, which has the translational symmetry only
in one direction, we just need to study its relevant symmetry or fuzzy symmetry on
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this direction. However, for layer group systems possessing translational symmetry
in two independent directions, the linear vector combinations of the two translational
directions are usually also a kind of translational symmetry and the choices of the direc-
tions can be unlimited in principle. For graphene molecule, an appropriate choice is
along the zigzag and armchair directions. In the following discussion, we generally
investigated by this choice.

Taking the quasi-graphene C200H40 as an example, it is defined that the i row is
counted from the top to bottom and the j column from the left to right. So, an arbitrary
C-atom is labeled as C(i, j), where i and j are integers in [1, n] and [1, m], respec-
tively. For the H-atoms in the top and bottom lines, they can be marked as H(0, j)
and H(n + 1, j) respectively, where the value of j is the same as that of the con-
nected C-atom. Similarly, H-atoms in the left and right columns are marked as H(i, 0)

and H(i, m + 1) respectively and the value of i is the same as that of the connected
C-atom. Following this definition, any one graphene molecule contains n×m C-atoms
and (m − 1) + 2n H-atoms with the molecular formula CmnH(m−1+2n). Any an atom
A(i, j) (A = C or H) in the molecule under the symmetry transformation Ĝ will
change into atom A(gi, gj), where A(gi, gj) can be C, H or virtual atoms. Then, the
atomic criterions of A(i, j) and A (gi, gj) atoms are defined as Y(i, j) and Y(gi, gj),
respectively. According to the fuzzy symmetry theory, the membership function of the
molecule under the symmetry transformation Ĝ is expressed as:

μZ(Ĝ) =
⎡
⎣∑

i, j

(Y(i, j) ∧ Y(gi, g j))

⎤
⎦

/⎡
⎣∑

i, j

(Y(i, j))

⎤
⎦ (1)

where the values of i and j are integers in [0, n + 1] and [0, m + 1]. For the virtual
atom, its corresponding atomic criterion is 0; for non-virtual atom, the corresponding
atomic criterion can be defined according to different requirements. For example, the
molecular skeleton can take the atomic numbers as the criterion for its atoms. Thus,
in formula (1), the denominator is actually the summation of the atomic numbers of
all the atoms. For molecule C200H40, the denominator is (6mn + m − 1 + 2n) and its
value is 1,240, while the value of numerator portion in formula (1) is no larger than
1,240, the membership functions are no bigger than one.

Then, we will analyze the molecular skeleton membership function of molecule
C200H40 about the translational symmetry transformation. We firstly investigate the
membership function of translating l periodic lengths along the horizontal direction
rightwards. For any one atom A(i, j), it changes into A(i, g j) = A(i, j + 2l) after
translation l periodic lengths. For the molecular skeleton, the membership function of
formula (1) changes into:

μZ(Ĝ) = {n(m − 2l)YC + (m + 2n − 2l − 1)YH} / {nmYC + (m + 2n − 1)YH} (2)

It can be seen that such membership function of molecular skeleton declines linearly
with the periodic length 2l, and approaches to 1 with the increase of m. For example,
in molecule C200H40, when translating one periodic length, its membership function
is 1,142/1,240(about 0.921); even translation two periodic lengths, the membership

123



J Math Chem (2012) 50:1309–1332 1313

function is 1,044/1,240(about 0.842). It can be seen that if this molecule is treated
with the general space translational group, the results will not be distorted too much.

If we omit the H-atoms in the quasi-graphene molecule, which is equivalent to
investigate the graphite fragments, and the formula (2) can be reduced as:

μZ(Ĝ) = {n(m − 2l)YC} / {nmYC} = (m − 2l)/m (2-1)

For C200H40, its membership function of translating one periodic length is 23/25 =
0.92; while that of translating two periodic lengths is 21/25 = 0.84. We can see that
the influence of H-atoms is very tiny. We can also make similar analysis for other direc-
tion translational symmetry transformation. On the other hand, for molecule C200H40,
when we translate it along the upright direction (i.e. the armchair direction), its mem-
bership function of translating l ′ periodic lengths along the upright direction can be
expressed as:

μZ(Ĝ) = {
m(n − 2l ′)YC + (m + 2n − 2l ′ − 1)YH

}
/ {nmYC + (m + 2n − 1)YH}

(3)

From formula (3), we can see that the membership function of molecular skeleton
about translational symmetry transformation also declines linearly with the periodic
lengths 2l’, while approaches to 1. Also for C200H40, when translating one periodic
length along the upright (armchair) direction, its membership function is 938/1,240
(about 0.756). If we omit the H-atoms, the formula (3) can be reduced as:

μZ(Ĝ) = {
m(n − 2l ′)YC

}
/ {nmYC} = (n − 2l ′)/n (3-1)

Then, its membership function about translating one periodic length along the upright
direction is 6/8 = 0.75, which is very close to the value calculated by formula (3)
when considering the H-atoms.

Comparing the membership function of translating 1 periodic length along the hor-
izontal direction with that of along the upright direction, we can see that the former
(0.92) is much bigger than the latter (0.75). This indicates that if C200H40 is treated
with the general space translational group along the horizontal direction, the results
will not be distorted too much, while it will be distorted somewhat along the upright
direction. The reason can be found in the following presentation. In investigating the
fuzzy one-dimensional periodic systems with limited size [17,21], we have indicated
that when the characteristic size of one-dimensional system is ten times more than
the translation length, the corresponding translational symmetry membership func-
tion is relative large (>0.8 ∼ 0.9) and its symmetry can be approximately disposed
by a perfect space group. For graphene molecule belongs to the fuzzy 2D system, we
need to analyze the translational membership function along two different periodic
directions. For molecule C200H40, the membership function of translating one peri-
odic length along the horizontal direction (treated as zigzag graphene) is 0.92, while
that of translating a periodic length along the vertical direction (treated as armchair
grephene) is only 0.75. This is because the molecular size of the C200H40 is set with 12
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periodic lengths expanding along the zigzag direction, while only 4 periodic lengths
expanding along the armchair direction.

2.3 Fuzzy symmetry calculations of π -MO

The π -MO of graphene calculated by the computational chemistry program can be
denoted as:

�ρ =
∑

ja

∑
iao

aρ( ja, iao)ϕ( ja, iao) =
n−1∑
ν=0

�ρ(ν) (4)

Then, the MO membership function can be obtained by the molecular orbital linear
combination coefficients aρ( ja, iao) of the LCAO-MO. Where aρ( ja, iao) expresses
the iaoth atomic orbital of the jath atom. The membership function of �ρ-MO about
the Ĝ symmetry transformation is denoted as [12–15]:

μY(Ĝ;�) =
∑

ja

∑
iao

(
Y( ja, jao)�Y(g ja,gao)

)/ ∑
ja

∑
iao

(
Y( ja, jao)

)
(5)

According the fuzzy symmetry theory, Yρ( ja, jao) in the above formula is chosen
as the square of the molecular orbital linear combination coefficients aρ( ja, iao) and
its value is of course relative to �ρ .

All the molecular orbital calculations are performed on the Gaussian03 program
[38] by using the HF/STO-3G method. We mainly discuss the fuzzy symmetry of
π -MO about the space translational symmetry transformation along the zigzag direc-
tion and the armchair direction.

3 Results and discussion

Convenient for comparison and discussion, we analyze the molecular structures,
π -MO energies and fuzzy symmetries of several zigzag and armchair graphene mol-
ecules with D2h point group symmetry. In addition, several graphenes else with other
symmetries are also studied to compare with the zigzag and armchair graphenes.

3.1 Zigzag graphene molecules

Primarily, we discussed four zigzag graphene molecules with D2h point group sym-
metry: C100H32, C84H28, C68H24, and C52H20. Their geometrical skeleton structures
are similar to that of molecule C200H40 (see Fig. 1). They all contain four lines (n = 4)

of C-atoms, while the columns m = (4i + 1; where i = 6, 5, 4, 3) decrease in turn
along the horizontal direction, similar as a group of homologues. These four molecules
respectively contain (4i +1)×4 C-atoms and form m ×n = 4m π -MOs, in which the
bonding occupied molecular orbitals (OMOs) and the anti-bonding vacant molecular
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Fig. 2 π -MO energies of zigzag graphene C100H32, C84H28, C68H24, and C52H20. a π -MO energy
versus J. b π -MO energy versus J/JM

orbitals (VMOs) each account for a half. According to the group theory, those π -MOs
of D2h point group belong to some of the four irreducible representations: Au, B1g,
B2g, and B3u. Calculated by Gaussian program at the STO-3G level, we find that the
number of those π -MOs belonged to Au and B1g is both (m − 1), while that belonged
to B2g and B3u is both (m + 1).

3.1.1 Symmetry characteristics of the MO energy in zigzag graphene

We denote the HOMO and LUMO as π -OMO-1 and π -VMO-1, the other bonding
and anti-bonding π -MO are expressed as π -OMO-J and π -VMO-J, respectively. The
suffix J denotes the serial number of π -MOs. So, its value of the frontier MO is 1,
and the values of other π -MOs are 2, 3, . . ., and 2m in turn. Then, the π -MO ener-
gies versus molecular orbital number J plots are drawn for the four zigzag graphene
molecules and each shows an approximate italic “S-shaped” curve composed by the
energy dots corresponding to π -MOs as given in Fig. 2a, where the abscissa is J, neg-
ative for the OMO and positive for the VMO, respectively. From Fig. 2a, we can see
that the energy dots corresponding to OMO and VMO are segregated in two sets but
close to each other, forming two separated branches. In addition, only small energy
gaps exist between the OMO and VMO for all the molecules. We have pointed out
that for some conjugated molecules, such kind of π -OMO and π -VMO branches are
corresponding to the full band and the conduction band of one-dimensional crystals,
and the gap is corresponding to the forbidden band gap [21,22]. So, it can be expected
that a zigzag graphene molecule containing a large quantity of C-atom should have
electrical conductivity, which is consistent with the known results [39].

These π -MOs all possess D2h point group symmetry, belong to one of the irre-
ducible representations (Au, B1g, B2g, and B3u), and are labeled by different symbols
as shown in Fig. 2a. Furthermore, if we use the relative orbital number J/abs(JM)

instead of the orbital number J (JM is the largest absolute value of J), the correspond-
ing energy dots of the four graphenes fall into the same italic “S-shaped” curve as
shown in Fig. 2b. Moreover, the dot distributions in Fig. 2a seem to hint certain rules,
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Fig. 3 π -MO energies of some
zigzag graphene molecules
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so the MOs belonging to the same irreducible representation are gathered and studied
to clarify the possible rules. In order to labeling the π -MOs of a particular irreducible
representation, we use j and jM instead of J and JM. Where the minuscule j denotes
the orbital number corresponding to the π -MOs belonged to a certain irreducible rep-
resentation, while the capital J denotes the orbital number of π -MOs belonged to the
four irreducible representations as a whole; and jM denotes the largest absolute value
of j. Then, we use j/jM to obtain the relation between the π -MO energy and j/jM as
shown in Fig. 3.

From Fig. 3, the curves are approximately separated and symmetrically distrib-
uted about the non-bonding energy level. The energy sequence of π -MOs belonged
to different irreducible representations is:

E
{
B2g(V) ≈ Au(V)

}
> E

{
B1g(V) ≈ B3u(V)

}

> E
{
Au(O) ≈ B2g(O)

}
> E

{
B1g(O) ≈ B3u(O)

}
(6)

This sequence can clear be seen from any and alone zigzag graphenes. It should be
noted that: we adopt the absolute value of j/jM for the abscissa in Fig. 3, so the OMO
and VMO all take positive value in the abscissa axis.

3.1.2 Fuzzy symmetry characteristics of the MOs in zigzag graphene about
the translational transformation

Subsequently, we begin to explore the fuzzy symmetry of the MO in graphene molecule
about the space translational transformation. For zigzag graphene, it is expanded more
widely along the zigzag direction than the corresponding orthogonal direction. For
example, the mentioned four zigzag graphene molecules contain 6–12 benzene rings
along the horizontal direction, while they only have 3 benzene rings on the orthogonal
direction. Their membership functions of translational transformation about trans-
lating l periodic length along the zigzag direction (T̂Z(l)) are denoted as MFTZl.
Similarly, the membership functions of translational transformation about translating
l periodic length along the armchair direction (T̂A(l)) are denoted as MFTAl. The
membership function of the MO obtained by Gaussian program can be calculated
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Fig. 4 Membership functions of the zigzag graphene C100H32 about translational transformation.
a C100H32: MFTZ1 versus J. b C100H32: MFTA1 versus J

basing on the formula (5). For C100H32, its membership functions of translating 1
periodic lengths along the zigzag direction (MFTZ1) and along the armchair direction
(MFTA1) are shown in Fig. 4a and b, respectively. It should be recalled that the peri-
odic cell contains one benzene ring along the zigzag direction, while the periodic cell
contains two benzene rings along the armchair direction.

We can find out that the value range of MFTZ1 is about 0.2–0.9, which is larger
than that of MFTZ2 (0.3–0.8), corresponding figure being omitted. In addition, in
Fig. 4a, for the OMO and VMO belonged to a given irreducible representation, their
corresponding dots are approximately distributed in two “U-shaped” curves. The mem-
bership function (MFTA1) in Fig. 4b is for translating 1 periodic cell (two benzene
rings) along the armchair direction. Because the molecule only contains three ben-
zene rings at the armchair direction, the corresponding membership function is much
smaller and usually under 0.5. More instructively, if we analyze the MO belonged to
the same irreducible representation of D2h point group by using the relative orbital
number j/abs(jM), the similarity will be obvious at once as shown in Fig. 5, and in
each panel the four zigzag graphenes are included.

From Fig. 5, it can be seen that for the four irreducible representations,
the corresponding dots of MFTZ1 form four sets and are distributed in four
U-shaped curves. As for different graphene molecules, the U-shaped curves of the
same irreducible representation are very similar. Though there are two U-shaped
curves for either OMO or VMO in the same irreducible representation, the pair
of curves are not symmetrical distributed about the nonbonding MO (NBMO;
j/abs(jM) = 0). In addition, for the irreducible representation Au, if we interchange
the OMO with VMO (i.e. swapping the position of −j and j), the transformed
U-shaped curves of Au could be almost superposed with that of B1g as shown in
Fig. 5. Analogously, the transformed U-shaped curves of B2g are almost superposed
with that of B3u. In these irreducible representations, Au and B1g are a group, while
B2g and B3u are another group. This is consistent with Fig. 3 and Eq. 6.

We can also do the analysis about MFTZ2 basing on the formula (5) and the cor-
responding curves. There is some similarity between MFTZ2 and MFTZ1, however,
the number of U-shaped curves for each irreducible representation in MFTZ2 is more
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Fig. 5 MFTZ1 versus j/abs(jM) of four irreducible representations belonged to D2h point group in
C100H32, C84H28, C68H24, and C52H20 (i.e. m = 25, 21, 17 and 13)

than 4. As for translational transformation of translating more periodic lengths (l ≥ 3),
the number of the U-shaped curves increases rapidly, which results in the reduction of
the number of distributed dots and more difficult to distinguish these U-shaped curves.
The relative figures are omitted for save space.

Then, we also investigated the membership functions of translating one periodic
cell (l = 1) along the armchair direction based on the formula (5). The results of the
above four graphene molecules are shown in Fig. 6. Because the translational periodic
cell contains two benzene rings and the translational interval along the armchair direc-
tion is very short, the corresponding membership function is relatively small. Even
so, the irreducible representations Au and B1g are a group; B2g and B3u are another
group, which is similar as the analysis of MFTZ1 and MFTZ2.

3.2 Armchair graphene molecules

For comparison, armchair graphene molecules C108H32, C72H24, and C36H16 pos-
sessed D2h point group symmetry are taken as examples to investigate. Their geomet-
rical skeleton structures are similar to that of molecule C200H40 in Fig. 1. They all
contain nine columns (m = 9) of C-atom, while the lines (n = 4i ; i = 3, 2, 1) decrease
in turn along the vertical direction, and similar as a homologues group. These three
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Fig. 6 MFTA1 versus j/abs(jM) of four irreducible representations belonged to D2h point group in
C100H32, C84H28, C68H24, and C52H20

molecules, respectively contain 9 × 4i (i = 3, 2, 1) C-atoms and form m × n = 9nπ -
MOs, in which the bonding occupied molecular orbitals (OMOs) and the anti-bonding
vacant molecular orbitals (VMOs) each accounts for a half. According to the group
theory, those π -MOs all possess D2h point group symmetry and belong to some of
the four irreducible representations: Au, B1g, B2g and B3u. Calculated by Gaussian
program at the STO-3G level, we find that the numbers of those π -MOs belonged to
different irreducible representations are 2n(Au), 2n(B1g), 2.5n(B2g), and 2.5n(B3u),
respectively.

3.2.1 Symmetry characteristics of the MO energy in armchair graphene

Similar with Sect. 3.1.1, we also plot the π -MO energies versus orbital number J for
the three armchair graphene molecules, respectively and obtain for each molecule an
approximate italic S-curve as shown in Fig. 7, where the abscissa is J, negative for the
OMO and positive for the VMO. Similar to zigzag graphene, an energy gap between
the OMO and VMO also appears for all armchair molecules. If we use the relative
orbital number J/abs(JM) instead of the orbital number J, the corresponding energy
dots of the three graphene will fall into the same italic S-curve similar as the zigzag
molecules.
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Fig. 7 π -MO energies of
armchair graphenes C108H32,
C72H24, and C36H16
(i.e. n = 12, 8, and 4)
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Fig. 8 π -MO energies of some
armchair grapheme
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These π -MOs all possess D2h point group symmetry and belong to one of the
irreducible representations (Au, B1g, B2g, and B3u). In Fig. 8, π -MOs belonged to
different irreducible representations are labeled by different symbols and number in
the parentheses after the irreducible representations denotes the number of rows of
C-atoms in each graphene. From Fig. 8, we can see that for one appointed armchair
graphene, the energy dots corresponding to OMO and VMO are segregated in two
sets but close to each other, forming approximately two separated branches. We have
mentioned that for some conjugated molecules, such π -OMO or π -VMO branches
correspond to the full band or the conduction band of the one-dimensional crystal,
and the gap corresponds to the forbidden band gap [21,22]. Thus, it can be expected
that an armchair graphene molecule containing a large quantity of C-atoms should
also have electrical conductivity. However, contrasted with the zigzag graphene, the
energy gap in armchair graphene is a little large. Perhaps this indicates that the electri-
cal conductivity of armchair graphene is not as high as that of zigzag graphene, which
is consistent with the known results [39,40].

By the way, we may also probe the molecular hardness (η) of the graphenes pre-
liminary By using the principle of maximum hardness suggested by Parr and Pearson
[41–43] and according to Koopmans’s theorem [44], approximately, we can get:

η = (εLUMO − εHOMO)/2 (7)
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So, a hard molecule ought to be the larger energy gap (εLUMO − εHOMO). Comparing
the Figs. 2 and 7, perhaps, one may find that the molecular hardness of the armchair
graphenes would be larger than that of the zigzag graphenes.

For these armchair graphene molecules, since they all possess D2h point group
symmetry, the π -MO energies of each of them can also be analyzed by the corre-
sponding irreducible representations belonged to D2h point group. Similar to zigzag
graphene (see Fig. 3), Fig. 8 shows the plot for the π -MO energies of the three armchair
graphenes. Comparing Fig. 3 with Fig. 8, we can see that the appearances of Figs. 3
and 8 are very similar. However, for single molecule, the dot distributions of OMO
and VMO near the frontier MO are significantly different as shown in Figs. 3 and 8.
In deed, it is very obvious that dots near the frontier MO are very sparse in Fig. 8 than
that in Fig. 3, which suggests that the electrical conductivity of armchair graphene is
lower than that of zigzag graphene. In fact, the results of tight binding approximation
model suggest that: zigzag graphene shows the property of metal bond, while armchair
graphene possesses the character of metal or semiconductor properties [39]. Density
functional theory (DFT) calculations also show that the armchair graphene composing
the graphene nano-ribbons has semiconductor property and its energy gap inversely
proportions to the width of the graphene nano-ribbons [39]. The experimental results
indeed confirm that energy gap will increase with the decrease of the width of the
graphene nano-ribbons [40]. Therefore, our result seems reasonable.

3.2.2 Fuzzy symmetry characteristics of the MOs in armchair graphene about
the translational transformation

In this section, the above three armchair graphene molecules are still taken as exam-
ples to discuss the fuzzy symmetry characteristics of this kind of molecules. For these
armchair graphene molecules, there are 3–11 benzene rings in the armchair direction,
while only 3–4 benzene rings along the orthogonal direction (namely, zigzag direc-
tion). Their membership functions of translational transformation about translating l
periodic length along the zigzag direction (T̂Z(l)) are denoted as MFTZl. Similarly,
the membership functions of translational transformation about translating l periodic
length along the armchair direction (T̂A(l)) are denoted as MFTAl. These member-
ship functions of MOs obtained by Gaussian program can be calculated by using the
formula (5). For C108H32, its membership functions of translating 1 periodic lengths
along the zigzag direction (denoted as MFTZ1) and that along the armchair direction
(denoted as MFTA1) are shown in Fig. 9a and b, respectively. The abscissa J and the
meanings of other symbols are the same as that in Fig. 4. Here, the periodic cell con-
tains one benzene ring when translating along the zigzag direction, while contains two
benzene rings if translating along the armchair direction. Comparing the membership
functions of the zigzag graphene with the armchair graphene about the translation
transformation (Figs. 4, 9), there are some differences in their fuzzy symmetry char-
acteristics.

Firstly, comparing Fig. 4a with Fig. 9a, though the molecular size and the number
of π -MOs of C100H32 (zigzag graphene) are similar to C108H32 (armchair graphene),
the translational distances along the zigzag direction, the resulting value intervals of
MFTZ1 of zigzag C100H32 are all larger than that of armchair C108H32. In addition,
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Fig. 9 Membership functions of the armchair graphene about translational transformation along the zigzag
or armchair direction. a C108H32: MFTZ1 versus J. b C108H32: MFTA1 versus J

the U-shaped curve for the appointed irreducible representation in zigzag C100H32is
very obvious, but the curve in armchair C108H32 is hardly to see.

Secondly, for the MFTA1 along the armchair direction (see Figs. 4b, 9b), the trans-
lational distance of the armchair graphen molecule is larger than that of the zigzag
graphen. In Fig. 4b, the distribution of dots is lost the pattern of a U-shaped curve, but
we can see this kind of curves appear though somewhat hazy in Fig. 9b. Because the
translational range is small and molecular size is only about 5.5 times of the translating
periodic cell, these U-shaped curves cannot be clearly seen.

We can also use the relative orbital number j/abs(jM) of the irreducible represen-
tations belonged to D2h to analyze the membership functions of the three armchair
graphene molecules as shown in Fig. 10 and the U-shaped curves are still discern-
ible. From Fig. 10, for all of these four irreducible representations, we can obtain the
U-shaped curves by using the MFTA1 versus j/abs (jM) mapping their distribution rela-
tions. As for different graphene molecules, the U-shaped curves of the same irreducible
representation look almost the same. But the two U-shaped curves corresponding to
the OMO and VMO in the same irreducible representation are not symmetrical dis-
tributed about the NBMO. If we interchange the OMO with VMO (i.e. swapping the
position of −j and j), the transformed U-shaped curves of Au could be almost super-
posed with that of B1g. Similarly, the transformed U-shaped curves of B2g are almost
superposed with that of B3u. If interchange the OMO with VMO (i.e. replacing j by
−j), the U-shaped curves about Au and B1g may be almost interchangeable with each
other. Similarly, these U-shaped curves of B2g and B3u may be also interchangeable.
In the four irreducible representations, Au and B1g are a group, while B2g and B3u are
another group.

3.3 Some other graphene molecules

In the above sections, a series of zigzag and armchair graphene molecules possess-
ing D2h point group symmetry are studied. However, there may be other point group
symmetries in graphenes. Those point groups can be the subgroup of D2h, or take D2h
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Fig. 10 MFTA1 versus j/abs(jM) of four irreducible representations belonged to D2h point group in
C108H32, C72H24 and C36H16

as their subgroup. In these two categories, we give some examples to be discussed,
respectively.

3.3.1 Some zigzag graphene molecules possessing the symmetry
of the subgroup of D2h

In this section, two zigzag graphene isomers with the molecular formula C94H30
are investigated. They possess the symmetries of C2h and C2v (both the subgroup of
D2h point group) and denoted as C94H30(C2h) and C94H30(C2v), respectively. Their
molecular structures are shown in Fig. 11. Note that the selection of the direction of
coordinate axis in the Cartesian coordinates is based on the different point group of
the molecule as shown in Fig. 11, by which we can determine the symbols of the irre-
ducible representation of the related π -MO. This choice of coordinates is consistent
with the coordinates provided by the Gaussian program. For the two molecules, their
π -MOs belong to the irreducible representations Au and Bg for C94H30(C2h), while
A2 and B1 for C94H30(C2v), respectively.

Subsequently, we begin to discuss the π -MO energies and symmetries of the two
zigzag graphene molecules. Their π -MO energies are showed in Fig. 12. Their rela-
tions between π -MO energy and orbital number J are similar to that in Fig. 2a of
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Fig. 11 Molecular structures of two zigzag graphene: a C94H30 (C2h). Z axis (the direction of π -MO) is
perpendicular to the paper plane and b C94H30 (C2v). X axis (the direction of π -MO) is perpendicular to
the paper plane
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Fig. 12 π -MO energy versus J in a C94H30 (C2h) and b C94H30 (C2v)

those D2h molecules. However, these two molecules don’t possess the perfect D2h
symmetry, and only have the fuzzy D2h symmetry. Therefore, their π -MOs can’t be
simply classified by the four irreducible representations belonged to the D2h point
group, and should be classified by the irreducible representations belonged to C2h and
C2v, namely (Au, Bg) and (A2, B1), respectively.

Figure 13a and b show the membership functions of the two graphene molecules
about translating one periodic cell along the zigzag direction, respectively. In Fig. 13,
it can be seen that the points are symmetrical distributed about the NBMO.
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Fig. 13 MFTZ1 versus J of a C94H30 (C2h) and b C94H30 (C2v) about translating one periodic length
along the zigzag direction

The relationship between MFTZ1 and orbital number J is similar to that of
C100H32(D2h) in Fig. 4a. However, the π -MOs of C100H32(D2h) belong to four irre-
ducible representations, and the π -MOs of C94H30 (C2h) and C94H30 (C2v) involve
just two irreducible representations. So, there are four different irreducible represen-
tations in Fig. 4a, while only two in either Fig. 13a or b. Furthermore, In Fig. 4a,
for C100H32 (D2h), the distributions of the π -MOs belonged to B3u and B1g are in
the similar curves (denoted as curves I), while the distributions of Au and B2g are in
another similar curves (denoted as curves II), there are coincide with Eq. 6. For the
π -MOs of C94H30 (C2v), points of B1 are distributed near the curves I; points of A2
are distributed near the curves II as shown in Fig. 13b. As for the π -MOs of C94H30
(C2h), the curves I and II both contain the relative points of Au and Bg simultaneously,
as shown in Fig. 13a. The reason for this interesting phenomenon can be found later
text.

Because C2h and C2v are both the subgroup of D2h, the fuzzy symmetry of graph-
enes C94H30 (C2h) and C94H30 (C2h) can be analyzed by the D2h point group. Their
irreducible representations of the π -MOs can be expressed by the superposition of two
relevant irreducible representations of D2h point group. According to the fuzzy sym-
metry theory [12,13], it can be determined by the membership functions of the π -MO
through a two-fold symmetry transformation. This kind of symmetry transformation
exists in the D2h point group, but not in its subgroup. For example, for the π -MO of
C94H30 (C2h), the two-fold symmetry transformation can be the mirror reflect trans-
formation (see Fig. 11a, where the xy plane as the mirror M1), or the central inversion
transformation, which can not be of C94H30 (C2v). On the other hand, for the π -MO of
C94H30 (C2v), such two-fold symmetry transformations can be any one of the mirror
reflect transformations(see Fig. 11b) which may be not of C94H30 (C2h).

Corresponding to the transformations in D2h not in C2h, the same membership func-
tion of the π -MO of C94H30 (C2h) versus its orbital number J is obtained and plotted
in Fig. 14a. In Fig. 14a, all the dots near symmetrically distributed about the NBMO.
For the same J, the membership function (MF) values of the OMO-J and VMO-J are
similar, but they belong to different irreducible representations, that is, the dots for
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Fig. 14 MF versus J (π -MO of a C94H30 (C2h) and b C94H30 (C2v) about a certain twofold symmetry
transformations in D2h

Au and Bg are near symmetrically distributed about the NBMO. For example, for the
pair of dots J = −47(the minimum J) and J = 47(the maximum J), the corresponding
membership functions of Au(O) and Bg(V) are both about 0.95.

As for the π -MO of C94H30 (C2v), the relevant plot of membership function of the
π -MO of C94H30 (C2v) versus orbital serial number J, according to the transforma-
tions in D2h not in C2v, can be drawn and shown in Fig. 14b. In Fig. 14b, we can see
that the dots also near symmetrically distributed about the NBMO and for the same J,
the MF values of OMO-J and VMO-J are nearly the same, but their relevant irreduc-
ible representations are different. The dots for A2 and B1 are also near symmetrically
distributed about the NBMO. This is similar to the results in Fig. 14a.

There are two correlative but distinct physical entity in molecular symmetry theoret-
ical studies: the symmetry and conservation quantity, specifically, the molecular point
group and the irreducible representation of the related MOs (i.e. its characteristics)
[45]. The corresponding physical entity in the study of molecular fuzzy symmetry are
the membership functions and irreducible representation components [12,13]. For the
two-fold symmetry transformation, Ĝ2, its corresponding combination coefficients for
irreducible representation components are the symmetrical components XS and the
anti-symmetrical components XA. If their corresponding irreducible representations
are denoted as 	(S) and 	(A), respectively, the membership function of MO is:

	 = XS	(S) + XA	(A) (8)

Similarly, for the π -MOs of C94H30 (C2h), the irreducible representations Au and Bg
of C2h point group can be expressed as:

	(Au/C2h) = X(Au/D2h)	(Au/D2h) + X(B3u/D2h)	(B3u/D2h) (8a)

	(Bg/C2h) = X(B2g/D2h)	(B2g/D2h) + X(B1g/D2h)	(B1g/D2h) (8b)

where the symbols, before and after the ‘/’ in the parenthesis, represent the irreduc-
ible representation and its originating point group, respectively. When we choose the

123



J Math Chem (2012) 50:1309–1332 1327

0.0

0.2

0.4

0.6

0.8

1.0
m

em
be

rs
hi

p 
fu

nc
tio

n

representation component

 Au

 Bg

 BV

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

m
em

be
rs

hi
p 

fu
nc

tio
n

representation components

 B
1

 A
2

 BV

(b)

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 15 Membership function versus irreducible representation in a C94H30 (C2h) and b C94H30 (C2v)

two-fold symmetry transformation mentioned above, formulas (8a) and (8b) both
establish. Of course, among the irreducible representations of D2h, the symmetrical
and the anti-symmetrical irreducible representations may be altered, but the final for-
mulas (8a) and (8b) will still be the same. Thus, we can calculate the coefficients of the
irreducible representation components for the π -MO in the D2h, based on the fuzzy
symmetry theoretical methods [12,13]. Similarly, for the π -MOs of C94H30 (C2v), the
irreducible representations A2 and B1 of C2v can be expressed as:

	(A2/C2v) = X(Au/D2h)	(Au/D2h) + X(B2g/D2h)	(B2g/D2h) (9a)

	(B1/C2v) = X(B1g/D2h)	(B1g/D2h) + X(B3u/D2h)	(B3u/D2h) (9b)

Note that the irreducible representation A2 of C2v in formula (9a) is the combination
of the Au and B2g of D2h point group. In Fig. 14b, for the π -MOs of C94H30 (C2v), the
dots of the A2 are distributed in curves II. As for the π -MOs of C100H32, the dots of
the Au and B2g are also distributed in curves II as shown in Fig. 4a. This is consistent
with the C94H30 (C2v). Similarly, for the π -MOs of C94H30 (C2v), the dots of the B1
are distributed in a set of curves I basing on the formula (9b), which is consistent with
that of B1g and B3u in C100H32 as shown in Fig. 4a. Based on (8a) and (8b), it is not
hard to explain why the dots of Au and Bg of C94H30 (C2h) may be distributed in the
two curve sets (I or II), simultaneously.

Moreover, based on the fuzzy symmetry theoretical methods [12,13], we can obtain
the irreducible representation components for the relevant π -MO of the D2h point
group. We may show the relations between the components of the irreducible rep-
resentation and the orbital number J in C94H30 (C2h) and C94H30 (C2V) molecules,
easily.

Because there is a certain dependence between the membership function of π -MO
and the irreducible representation components [13,20,21], we can plot the membership
functions of the π -MOs in C94H30 (C2h) and C94H30 (C2V) versus the corresponding
irreducible representations components, as shown in Fig. 15a and b. The ordinate is
the membership functions of π -MO about the mentioned two-fold symmetry transfor-
mation in the subgroup of D2h. For C94H30 (C2h), as shown in Fig. 15a, the abscissa of
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the π -MOs belonging to the irreducible representation Au/C2h is X(B3u/D2h) and that
of π -MOs belonging to the irreducible representation Bg/C2h is X(B2g/D2h). As for
C94H30 (C2v), the abscissa of the π -MOs belonging to the irreducible representation
B1/C2v is X(B3u/D2h) and that of π -MOs belonging to the irreducible representation
A2/C2h is X(B2g/D2h) as shown in Fig. 15b. By the way, in Fig. 15, the boundary
value (BV) curve [20] limits the area where all the points will appear.

3.3.2 Graphene molecule possessing the D6h symmetry

In this section, we begin to discuss the graphene molecule possessing D6h symmetry.
The coronene-C96H24 may be shown as the example in Fig. 16. It contains 96 π -MOs,
including 48 bonding π -MOs and 48 anti-bonding π -MOs. These π -MOs belong
to the irreducible representations of D6h point group, which include 5 kinds of one-
dimensional irreducible representations (A1u, A2u, B1g, B2g, and B3u) and 2 kinds of
two-dimensional irreducible representations (E1g and E2u).

The π -MO energies of C96H24 molecule are shown in Fig. 17, in which Fig. 17a
exhibits the relation between π -MO energy and orbital number J; Fig. 17b and c
show the relation between π -MO energies of one-dimensional and two-dimensional
irreducible representations and the relative orbital number j/jM, respectively. These
figures are generally similar to the results of the earlier discussed graphene mole-
cules, however there are some distinct features. From Fig. 17a, it can be seen that the
gap between the OMO and VMO is larger, which suggests its electrical conductivity
may be weaker than that of the graphene discussed formerly. Because some of the
π -MOs belong to one-dimensional irreducible representations and the others belong
to two-dimensional irreducible representations, we use the E(π -MO) versus (j/jM)

draw figures shown in Fig. 17b and c, respectively. Generally speaking, these figures
are similar to that of the earlier discussed graphenes. The corresponding dots are sym-
metrically distributed about the NBMO. Note that in Fig. 17c, the MOs belonging to

Fig. 16 Molecule structure
of C96H24
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Fig. 17 π -MO energy versus J in C96H24 (D6h): a π -MO energy versus J(a); b π -MO energy versus j/jM

of one-dimensional irreducible representations; c π -MO energy versus j/jM of two-dimensional irreducible
representations

two-dimensional irreducible representations are two-fold degenerate, so each point in
the figure represents two π -MOs and the choice of the MOs may different. Usually,
each of the individual MO alone does not have all of the symmetries corresponding to
D6h, only the whole set of the two MOs can have those symmetries and the member-
ship functions (taking the sum of squares of the LCAO coefficients from every MO
attributed by the atom as the criterion of the atom) of all the symmetry transformations
of D6h point group can be equal to one, while for single MO, the membership function
of some symmetry transformations in D6h is less than one. These results have been
discussed in our analysis of the fuzzy symmetry of benzene [16] and the calculations
for C96H24 (D6h) molecule are similar, so the analogous calculations are omitted here.

As for the membership function of translating one periodic length along the zig-
zag direction (MFTZ1) in C96H24 (D6h) molecule is shown in Fig. 18. Similar to
the discussion in the previous mentioned graphenes, the dots distribution is symmet-
rical about the NBMO, and the points in the symmetrical positions also belong to
different irreducible representations. In addition, since quite a lot of MOs belong to
two-dimensional irreducible representations, they are twofold degenerate. The MFTZ1
values of these degenerate MOs are also degenerate. Figure 18 shows pairs of two adja-
cent equivalent points. Though the pair of degenerate MO can be selected in many
different ways, which may result in the value of MFTZ1 different, the MOs are always
degenerate and their MFTZ1 should be the same value for their MO set as a whole.
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Fig. 18 MFTZ1 versus J
in C96H24 (D6h)
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4 Conclusions

Generally speaking, graphene molecules can be regarded as fuzzy layer group (Gn
2∼
)

systems, which present periodic or fuzzy periodic translational symmetry in two inde-
pendent directions. The preferable choice is along the zigzag direction and the arm-
chair direction. So, we take some typical graphene molecules as examples to discuss
their symmetries and fuzzy symmetries, π -MO energies, the irreducible representa-
tion components, and the membership functions about the relevant space translational
symmetry transformation. The main conclusions obtained are summarized as follows:

(1) Analyzed a set of zigzag graphenes C100H32, C84H28, C68H24, and C52H20 pos-
sessing the D2h symmetry. In the plot of π -MO energy versus J (serial number of
π -MO), the dots are all distributed forming italic S-shaped curves with approx-
imately central symmetry, and a small gap in each curve can be regarded as the
NBMO energy level. For these zigzag graphenes, their membership functions of
translating one periodic cell along zigzag direction T̂Z(l) are also analyzed. As
for the appointed irreducible representation of OMO and VMO, the relative dots
are distributed in two U-shaped curves. When we use relative orbital number
instead of J, these U-shaped curves are almost the same for different molecules.

(2) A group of armchair graphene molecules C108H32, C72H24, C36H16 with D2h
symmetry are taken as typical examples. The plot of E(π -MO) versus J are sim-
ilar to that of zigzag graphene molecules. The main difference is that the energy
gap between OMO and VMO in armchair graphene is significantly larger than
that of the zigzag graphene. Maybe, the molecular hardness of armchair graphene
is also larger than that of zigzag graphene. For these graphenes, their membership
functions of translating one periodic cell along the armchair direction T̂Z(l) are
also analyzed. The plots of MFTA1 versus J are similar to that of MFTZ1 versus
J of zigzag graphene molecules. However, the main difference with the zigzag
graphene is that the relationship of MFTA1 versus J is not as obvious as in zigzag
graphene.

(3) Two zigzag graphene isomers C94H24 (C2h) and C94H24 (C2v) possessing sub-
group symmetry of D2h are discussed. In plot of E(π -MO) versus J and MFTZ1
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versus J, the obtained curves are approximately similar to that of the graphene
molecules of D2h symmetry, but the irreducible representations of the π -MOs
can only be determined according to the subgroup of D2h. Nevertheless, we can
analyze the fuzzy symmetries of their π -MOs according to the D2h point group
and obtain the components of their corresponding irreducible representations and
membership functions, as well as the correlation between them.

(4) Molecule C96H24 possessing the symmetry of D6h point group is briefly discussed
as well as the relationship between plots of E(π -MO) versus J and MFTZ1 versus
J. Because D6h point group possesses higher symmetry and D2h is its subgroup,
their π -MOs can belong not only to the one-dimensional irreducible represen-
tations, but also to two the two-dimensional irreducible representations. The
π -MOs of two-dimensional irreducible representations are all two-fold degen-
erate with the same energy level and the same membership function values.
However, the two degenerate π -MOs can be selected in different ways, the mem-
bership function MFTZ1 of the whole π -MO set ought to be always equal one.
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